If it's not what You are looking for type in the equation solver your own equation and let us solve it.
h^2=10
We move all terms to the left:
h^2-(10)=0
a = 1; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·1·(-10)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*1}=\frac{0-2\sqrt{10}}{2} =-\frac{2\sqrt{10}}{2} =-\sqrt{10} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*1}=\frac{0+2\sqrt{10}}{2} =\frac{2\sqrt{10}}{2} =\sqrt{10} $
| 2y=20+28 | | 11/2x+16=4-2/3x | | 10((2y+2)-y=2(8y-8) | | 7n+12=1.2(14n+24) | | 92=t+19 | | -31-11x+14x=53 | | 2+3y=4y-7 | | 22-17x+3x^2=0 | | j+27=61 | | b+-31=33 | | q-6/8+4=16 | | 15-9x=-3(x+10) | | 22-17x-3x^2=0 | | (x+1)/2+4=6+x | | -23=h-38 | | d/9=10 | | s/4=2.81 | | q-6+4=16 | | d-5.6=4.4 | | 1/28x+12=3x-4 | | 5(n+2)=2/5(5+10n) | | q-6=4=16 | | 3n+-1/2=-5/2 | | 150.8029/30=x | | 2s=10.56 | | 5t/4=4t/2 | | 1.33b+25=5b-18 | | 4/9/n=12 | | C=14.00+0.05x | | 1.74=z-6.16 | | 5x+20=9x-29 | | 3/4p+2=42/3 |